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BLOCK DESIGNS

by
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1. Preliminaries, One purpose of an experiment is to
determine which treatment is the best. In a randomized com-
plete block design the classical analysis involves a method
in which the total sum of squares is partitioned into different
sums of squares attributed to treatments, block and error. The
classical method of analysis of variance utilizes an F-test to
detect the significance of these treatments. However, one
could isolate the desired sum of squares for any linear con-
trast of treatments with the use of matrices instead of the
usual way of splitting the total sum of squares.

The usual hypotheses to be tested are:

(a) All treatment effects equal zero;

(b) The linear, quadratic, cubic and quartic contrasts,
depending on the design, are each equal to zero. Both hypo-
theses can be expressed as CA = O where C is a given matrix
consisting of s independent row vectors and A is a column vector
of unknown parameters to be estimated.

Roy! presented an expression for the F-test criterion for
the univariate analysis of variance in terms of matrices as
follows:

XA, (AYA)CIC (AYA)IC 11 G (A'lAl.)'l A'X /5
F =

X' [I(n) — A, (A4A)TA]X/ (ner)
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with s and (n-r) degrees of freedom, where

X = (X, X, ..., X,) is al by n vector of n independent:
stochastic variates with a common unknown variance %,

A, is a basis of the incidence matrix A with elements
0 and 1 for experiments that do not involve regression,

C, is the submatrix of C with elements that depend on the
hypothesis,

s is the number of independent rows in the matrix C,
n is the number of independent variates or observations,
I(n) is the n by n identity matrix.

For brevity, all matrices in the expression (1) between X' and

X will be designated by an equivalent expression for the nume-
rator with

(2)
MM = A; (AA)1CL[C, (ALA)TC! Cy (ALA) A
and the denominator with

L'L = I(n) — A, (AA)T A (3)

Thus, the expression (1) can now be written in its equivalent:
form

X'MMX /s (4)
X'L'LX / (n-r)

Both expression (1) and its equivalent expression (4) are
for the variance ratio F in the analysis of variance and are
expressed in terms of quantities involving raw data directly
obtained from the experiment and the hypothesis to be tested.

F =

In a randomized complete block design the linear estima-
tion model is

E(Xy) = p+8 + 7 (9)
where

p = the true mean,
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B: = the effect of the i-th block (i = 1,2, ..., q),

r; = the effect of the j-th experiment (j =1, 2, ..., p).
in matrix form, the expression (5) is

E(X) = Ax (6)

where A is n by m, A is an m by 1 unknown matrix of para-
meters to be estimated and m = p + q + 1 is the total number
of column vectors of the matrix A and is also the total number
of unknown parameters to be estimated.

2. Testing the Hypotheses. In testing a linear hypothesis,
the matrix expression C = O is used. For the null hypothesis
that all treatment effects equal zero, H,: i=0 (i =1, ..., p)
the expression is

0 0.0 )1 4 0.0 M 0
0 0...0 |1 0 -1...0 A 0
0o 0...00/1 0o 0...-11 L] Lo

For the hypothesis that a particular contrast equals zero the
expression is

A
/\'_'
(0 0...0]C») . = 0 (a scalar)

An )
where C; is 1 by p and the left partition of zeroes is 1 by g-1.
In both (7) and (8), A = (w81 81 ... By 7 ... 7) and the

elements for C, are the coefficients representing the particular
contrast to be tested. ‘

3. The Generalized Matrices, The matrices M'M and L'L
have been generalized for p treatments and q replications. For
the null hypothesis that all treatment effects equal zero, i.e.
H:n=0(i=12, ..., p)),
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1 :
MM=—(Ry) (i,j=1,2,...,q) (9)
Pq

- where the submatrices R;;’s are all identically given by the
expression (a p by p matrix)

p-1 -1 e -1
R, — -1 p-1 -1 (10)
-1 -1 ce p-1

For the null hypothesis that a particular contrast equals zero,
P

ie. H,: ¥ K;r; = 0 where K; is the orthogonal coefficient of

i=1
the i-th treatment as taken from the tables on orthogonal coef-
ficients by Fisher and Yates. [2]

»
MM= (1/q = K*)(Ry;) (},j=1,2,...,q) (11)
i=1

i=

‘where the submatrices Ri; are all identical, i.e.

K] K]Kf_’ ..o K]Kp

K:K, K. ce KK, (12)
Rij ol

KK, K, K. e K*

For all linear hypotheses to be tested, the matrix L'L remains
the same for p treatments and q replications. The generalized
matrix 'L is given by

L'L = (CRy),  (,i=12,...,q) (1)

paq

where the submatrix “R;; on the main diagonal is (the p by p)

/(p-1) (g-1) (1-q) (1-q)
Ry = (1-q) (p-1)(g-1) .... (1-q) (i=j)

| (1-q) (1-q) oo (p1)(a-1)
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which is the submatrix (10) multiplied by (g-1) and the p by p
submatrix submatrix “R,; not on the main diagnoal is

(1-p) 1 e 1
Ry=| * Py
i 1 .' .' .. (1;p)
which is the negative of the matrix (13).

4. Conclusion. Within the generalization of the matrices
M'M and L'L for use in testing linear hypotheses, an experi-
menter utilizing the randomized complete block design of p
treatments and q replications has at his disposal a tool for direct-
ly isolating the desired sum of squares in testing a particular
hypothesis.

For a single variate the linear estimation model is

X, a1 8y ... Qm /M
X2 ;s Aoo e Aoy Az
E . =] .
Xn / a,; apa e dnm \ Am /

and for p-variates the linear estimation model is

X]] X]: - X1D ayy A2 ... Ay Ar Moo.. )\Jp

Xy Koo ... Xop 8sp  Aue ... Ao || Azt Ase ... Agg
E ot

an Xn2 e an any Ays ... A l\lm )\mQ soee )\mp

It is seen from the expressions (16) and (17) that the matrix
A remains unchanged. Hence, the same matrices as presented
can be used for both the univariate and multivariate analysis.
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